Supervised Feature Selection Based Extreme Learning Machine (sfs-elm) Classifier for Cyber Bullying Detection in Twitter
ثبت نشده
چکیده
Cyber bullying detection that are prevailing commonly in social networks like Twitter is one of the focussed research area. Text mining and detecting cyber bullying has several research challenges and lot of research scope to work with. This research work makes use of supervised feature selection by ranking method in order to choose the features from the tweets. After that extreme learning machine (ELM) classifier is employed in order to perform the detection of cyber bullying tweets. Performance metrics such as accuracy and time taken for classification are chosen in order to evaluate the efficiency of the classifiers namely ELM and the proposed SFS-ELM. Implementations are done in MATLAB tool. From the obtained results it is evident that the proposed SFS-ELM produces better results than that of ELM Keywords— Cyber bullying, Twitter, feature selection, classification, detection, extreme learning machine, machine learning.
منابع مشابه
Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملDeformed Kernel Based Extreme Learning Machine
The extreme learning machine (ELM) is a newly emerging supervised learning method. In order to use the information provided by unlabeled samples and improve the performance of the ELM, we deformed the kernel in the ELM by modeling the marginal distribution with the graph Laplacian, which is built with both labeled and unlabeled samples. We further approximated the deformed kernel by means of ra...
متن کامل